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DIFFERENTIAL EQUATIONS

Differential equations are used to solve problems such as the following. You know (or think you

know) that the "instantaneous rate of change"  of some quantity is related to that  

quantity or some function of that quantity.

                  (1)

EXAMPLE:

If  is the population of some bacteria at time , and the bacteria grows at a rate that is   

proportional to its own population at the time , then we write:

              (2)



Where  is the constant of  proportionality The general solution to this equation is 

                    (3)

Where  is the population at time    

                   




 For example if 4 then the population is changing by 4% at time  The following graph is   

for an initial value of 100 and over time from 0 to 30

    

RADIO-ACTIVE DECAY
If the quantity being studied is  instead of  we could get the following equationdecaying growing
which says the change is proportional to the amount of material present at time .

                  (4)

with initial condition    
Solution graph:

Solution to      

   



FUNCTIONAL DIFFERENTIAL EQUATIONS
The differential equation

     

is the old stuff, started by the inventors of calculus and differential equations in the 1600's.
Cavalieri (1635), Fermat (1636), Decartes (1630), Newton(1687) and Leibniz (1672) , the
Bernoulli's (1695-1748), and others.

 The new stuff involves equations like

    

started by
Volterra (1909), Schmidt (1911), Tychonov (1938), Wright (1948), Krasovkii (1963), El'sgol'ts
(1973), and thousands of others since then.

DELAY DIFFERENTIAL EQUATIONS

In a Delay Differential Equation, you are working problems in which the "instantaneous rate of
change" does not depend on the quantity at that very instant, but really at some other  

(earlier) time or later time, . In general, functional differential equations      
express  in terms of other functions of time, such as the reciprocal, , or negative time,    



   etc.

EXAMPLE: THE THERMOSTAT PROBLEM



Room warming up



Suppose some quantity (such as room temperature) depends upon room temperature as controlled
by a thermostat.

                         (5)

Which says "Read the temperature ten minutes ago and change the temperature by   This 
equation looks a little like equation (4), but the solution will be quite different

We really need more information to solve this equation.  For Example if we are at time , we  
need to know what the temperature was ten minutes ago, at time and at all the times   
from to   That is we need to know for all   
     

The following graph is the solution to Equation (5), when we are given
that

  

when      

 
Solution to       

Compare this to the graph:

Solution to     

 Methods For Solving Constant Coefficient Delay Equation



 If and is a known  function whose derivatives are continuous on the interval   
          (that is, and if  is a constant, then the delay differential equation

             (6)

           (7)

can be solved by
1. The method of Characteristics
2. LaPlace transforms
3. Method of Steps

THE METHOD OF STEPS
 Skipping the first two methods, we discuss the method of steps; it is the easiest and it
works for more general equations.
Let and be a known function The problem is to find a function for          

   such that

            on 

and

      on 

Step 1: If then , call this part of the solution            

Step 2: If then so we solve  call                        


this part of the solution  



Step 3: If then , so we solve call                           


this part of the solution , etc. 

EXAMPLE:  If, for   

              (8)

and for      

               (9)

Which is the step1 solution . 

Graph of  

If then so           
 and the differential equation on  is:          

          

Solve for  call the solution   

     

Next for solve the differential equation                   




         

Here is the graphic solution after 3 steps (out to 3).

 
Solution to       

We check by plotting the graph of

            on 

Graph of        



Using EXCEL to Solve a Delay Differential Equation

We can use EXCEL to carry out the method of steps, if we, first, change the differential equation

           

     

into the finite difference equation:

             

     

We can then get a graphic solution by using the EXCEL Chart command on Column C as
computed in the spread sheet shown in below.  Choose , for some integer, say      
The delimiter box notation means use the cell in the th row.  For example           
means use the value in column  and row      

 A B C

...

...

        

           

           

  

   

  

                 

  

 







             

                                
          

                          

                                   









 

Application:

Pollution Clean-up

Assume a lake has a pollution concentration of at time , where  is the mass/volume.     
(example: Kg/acre feet).
    is the vol of the lake, usually a constant, say 9 acre feet.

     pollution history, mass/vol at time 
    mass of pollution in the lake at time (mass/vol)(vol) mass.
   rate of change in pollution, mass/time
With  constant, say , then  is the rate of change in pollution, mass/time   

 is the constant rate at which the polluted water is removed vol/time.



Assume at time  clean water (  pollution) is added at a rate of  also. This keeps the volume    
constant.

Two Models
1. "Instantaneous" or the well-stirred model depicted in biology, physics and engineering articles
by a little propeller. The incoming water is instantaneously mixed and the whole lake is uniformly
at the new pollution level as it leaves the lake.

         

   initial pollution.

2. "Delay" model

         

     

       pollution at a time  in the past where  is the time it takes for the new mixture to
start leaving the lake.

Assume the historical pollution is cut off at time  and clean water is input at a rate of    
(vol/time) and suppose , then the instantaneous equations are:  

        

  

And the delay equations are:

          

     

  

 is the history of pollution.

Given a constant history say 18% to be reduced to 9% in 3 years, then the solutions   
to the two models is as follows.



Delay in red

with the well-mixed model requiring   , each year 23% of the lakes volume has to be  
replaced by clear water coming in and polluted going out. For the delay model, , requiring  
a smaller exchange to achieve the same reduction. Why?

If the pollution history was increasing, say , then the older water was cleaner; so the   
 

two solutions are:

Delay in red

The well-mixed model assumes that the whole lake has the same level of pollution, but the delay
model is getting rid of the older (cleaner) water first so it is slower for a while.

If the pollution history is decreasing, say then the solutions are:      


Delay in red
The delay model is getting rid of the older dirtier water first, the well-mixed model assumes that
all the old water is already mixed and is slower to get rid of it.



Lake Pollution Profiles at the Start of Clean-Up
(Red graph is the delay model)

  aph
Constant . Different 's to achieve the same target 

 
Increasing , (FIFO of clean water), same 's 

  
Increasing , (FIFO of dirty water), same 's. 

HIGHER ORDER DIFFERENTIAL EQUATIONS

A second order equation
        



could be written as a system of first order equations:
       

         

Where  ,  
                 

          

       






=

     
 



   

         

This also holds for higher ordered equations, so  equation (1) can represent a very general
situation.

Example of a 2nd order  d.e.delay

If for ,   
                 + 

and for      
      

Let
     

then
              

or

           
      

   


 

Now if we let  and 
  

    
 then

               for 
         for 

INVERTED PENDULUM -- DELAY CONTROLLERS
With no controllers

    



With Proportional minus delay controller (PMD)

        

Comparison

The vertical axis is the angle of the pendulum (in units of )  and the horizontal axis is time.

Other second order acceleration delay problems are applied to using "shock absorber"
connections between buildings to dampen the effect of an earthquake.

           


